References#
Melchior, Joseph, Moolekamp. “Proximal Adam: Robust Adaptive Update Scheme for Constrained Optimization” (2020).
Parikh, Neal, and Stephen Boyd. “Proximal algorithms.” Foundations and Trends in optimization 1.3 (2014): 127-239.
Beck, Amir. First-order methods in optimization. Society for Industrial and Applied Mathematics, 2017.
Martins, André FT, et al. “Online multiple kernel learning for structured prediction.” arXiv preprint arXiv:1010.2770 (2010).
Combettes, Patrick L., and Jean-Christophe Pesquet. “Proximal splitting methods in signal processing.” Fixed-point algorithms for inverse problems in science and engineering. Springer, New York, NY, 2011. 185-212.
Simeoni, Matthieu Martin Jean-Andre. Functional Inverse Problems on Spheres: Theory, Algorithms and Applications. No. THESIS. EPFL, 2020.
Condat, Laurent. “A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms.” Journal of Optimization Theory and Applications 158.2 (2013): 460-479.
Yan, Ming. “A new primal-dual algorithm for minimizing the sum of three functions with a linear operator.” arXiv preprint arXiv:1611.09805 (2018).
Condat L., Kitahara D., Contreras A., and Hirabayashi A. “Proximal Splitting Algorithms for Convex Optimization: A Tour of Recent Advances, with New Twists.” arXiv preprint arXiv:1912.00137 (2021).
Condat L., Malinovsky G., and Richtarik, P.. “Distributed Proximal Splitting Algorithms with rates and acceleration.” Frontiers in Signal Processing (2022) 1:776825. doi: 10.3389/frsip.2021.776825
Chambolle, A., & Pock, T. (2011). A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of mathematical imaging and vision, 40(1), 120-145.
Lions, Pierre-Louis, and Bertrand Mercier. “Splitting algorithms for the sum of two nonlinear operators.” SIAM Journal on Numerical Analysis 16.6 (1979): 964-979.
Liang, Jingwei, Tao Luo, and Carola-Bibiane Schönlieb. “Improving” Fast Iterative Shrinkage-Thresholding Algorithm”: Faster, Smarter and Greedier.” arXiv preprint arXiv:1811.01430 (2018).
Valkonen, Tuomo, “A primal-dual hybrid gradient method for nonlinear operators with applications to MRI.” Inverse Problems 30 (2014), 055012, doi:10.1088/0266-5611/30/5/055012.
Rockafellar, R. Tyrrell. “Monotone operators and the proximal point algorithm.” SIAM journal on control and optimization 14.5 (1976): 877-898.
Jain, Raj, and Imrich Chlamtac. “The P2 algorithm for dynamic calculation of quantiles and histograms without storing observations.” Communications of the ACM 28.10 (1985): 1076-1085.
Rasmussen, Carl Edward, and C. K. Williams. “Gaussian processes for machine learning, vol. 1.” (2006).
Aziznejad, Shayan, and Michael Unser. “An L1 representer theorem for multiple-kernel regression.” arXiv preprint arXiv:1811.00836 (2018).
Barnett, Alexander H., Jeremy Magland, and Ludvig af Klinteberg. “A parallel nonuniform fast Fourier transform library based on an “Exponential of semicircle” kernel.” SIAM Journal on Scientific Computing 41.5 (2019): C479-C504.
Shih, Yu-hsuan, et al. “cuFINUFFT: a load-balanced GPU library for general-purpose nonuniform FFTs.” 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2021.
Wright S, Nocedal J. “Numerical optimization”. Springer Science. 1999 Apr 3;35(67-68):7.
Boyle JP, Dykstra RL. “A method for finding projections onto the intersection of convex sets in Hilbert spaces.” Advances in order restricted statistical inference 1986 (pp. 28-47). Springer, New York, NY.
Welford, B. P. “Note on a method for calculating corrected sums of squares and products.” Technometrics 4.3 (1962): 419-420.
Alain Durmus, and Éric Moulines. “Nonasymptotic convergence analysis for the unadjusted Langevin algorithm.” The Annals of Applied Probability 27(3) 1551-1587, 2017.
Alain Durmus, Éric Moulines, and Marcelo Pereyra, “Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin Meets Moreau”, SIAM Journal of Imaging Science, 2018
Cai, Xiaohao, Marcelo Pereyra, and Jason D. McEwen. “Uncertainty quantification for radio interferometric imaging–I. Proximal MCMC methods.” Monthly Notices of the Royal Astronomical Society 480.3 (2018): 4154-4169.