Source code for pyxu.operator.linop.filter

   1import collections.abc as cabc
   2import itertools
   3
   4import pyxu.abc as pxa
   5import pyxu.info.deps as pxd
   6import pyxu.info.ptype as pxt
   7import pyxu.operator.linop.base as pxlb
   8import pyxu.operator.linop.diff as pxld
   9import pyxu.operator.linop.pad as pxlp
  10import pyxu.operator.linop.stencil.stencil as pxls
  11import pyxu.runtime as pxrt
  12import pyxu.util as pxu
  13
  14try:
  15    import scipy.ndimage._filters as scif
  16except ImportError:
  17    import scipy.ndimage.filters as scif
  18
  19import functools
  20import typing as typ
  21
  22import numpy as np
  23
  24IndexSpec = cabc.Sequence[pxt.Integer]
  25KernelSpec = pxls.Stencil.KernelSpec
  26ModeSpec = pxlp.Pad.ModeSpec
  27
  28
  29__all__ = [
  30    "MovingAverage",
  31    "GaussianFilter",
  32    "DifferenceOfGaussians",
  33    "DoG",
  34    "Laplace",
  35    "Sobel",
  36    "Prewitt",
  37    "Scharr",
  38    "StructureTensor",
  39]
  40
  41
  42def _to_canonical_form(_, dim_shape):
  43    if not isinstance(_, cabc.Sequence):
  44        _ = (_,) * len(dim_shape)
  45    else:
  46        assert len(_) == len(dim_shape)
  47    return _
  48
  49
  50def _get_axes(axis, ndim):
  51    if axis is None:
  52        axes = list(range(ndim))
  53    elif np.isscalar(axis):
  54        axes = [axis]
  55    else:
  56        axes = axis
  57    return axes
  58
  59
  60def _sanitize_inputs(dim_shape, dtype, gpu):
  61    ndim = len(dim_shape)
  62
  63    if dtype is None:
  64        dtype = pxrt.Width.DOUBLE.value
  65
  66    if gpu:
  67        assert pxd.CUPY_ENABLED
  68        import cupy as xp
  69    else:
  70        import numpy as xp
  71    return ndim, dtype, xp
  72
  73
[docs] 74def MovingAverage( 75 dim_shape: pxt.NDArrayShape, 76 size: typ.Union[typ.Tuple, pxt.Integer], 77 center: typ.Optional[IndexSpec] = None, 78 mode: ModeSpec = "constant", 79 gpu: bool = False, 80 dtype: typ.Optional[pxt.DType] = None, 81): 82 r""" 83 Multi-dimensional moving average or uniform filter. 84 85 Notes 86 ----- 87 This operator performs a convolution between the input :math:`D`-dimensional NDArray :math:`\mathbf{x} \in 88 \mathbb{R}^{N_0 \times \cdots \times N_{D-1}}` and a uniform :math:`D`-dimensional filter :math:`\mathbf{h} \in 89 \mathbb{R}^{\text{size} \times \cdots \times \text{size}}` that computes the `size`-point local mean values using 90 separable kernels for improved performance. 91 92 .. math:: 93 94 y_{i} = \frac{1}{|\mathcal{N}_{i}|}\sum_{j \in \mathcal{N}_{i}} x_{j} 95 96 Where :math:`\mathcal{N}_{i}` is the set of elements neighbouring the :math:`i`-th element of the input array, and 97 :math:`\mathcal{N}_{i}` denotes its cardinality, i.e. the total number of neighbors. 98 99 100 Parameters 101 ---------- 102 dim_shape: NDArrayShape 103 Shape of the input array. 104 size: int, tuple 105 Size of the moving average kernel. 106 107 If a single integer value is provided, then the moving average filter will have as many dimensions as the input 108 array. If a tuple is provided, it should contain as many elements as `dim_shape`. For example, the ``size=(1, 109 3)`` will convolve the input image with the filter ``[[1, 1, 1]] / 3``. 110 111 center: ~pyxu.operator.linop.filter.IndexSpec 112 (i_1, ..., i_D) index of the kernel's center. 113 114 `center` defines how a kernel is overlaid on inputs to produce outputs. 115 For odd `size`, it defaults to the central element (``center=size//2``). 116 For even `size` the desired center indices must be provided. 117 118 mode: str, list[str] 119 Boundary conditions. 120 Multiple forms are accepted: 121 122 * str: unique mode shared amongst dimensions. 123 Must be one of: 124 125 * 'constant' (default): zero-padding 126 * 'wrap' 127 * 'reflect' 128 * 'symmetric' 129 * 'edge' 130 * tuple[str, ...]: the `d`-th dimension uses `mode[d]` as boundary condition. 131 132 (See :py:func:`numpy.pad` for details.) 133 gpu: bool 134 Input NDArray type (`True` for GPU, `False` for CPU). Defaults to `False`. 135 dtype: DType 136 Working precision of the linear operator. 137 138 Returns 139 ------- 140 op: OpT 141 MovingAverage 142 143 Example 144 ------- 145 146 .. plot:: 147 148 import matplotlib.pyplot as plt 149 import numpy as np 150 from pyxu.operator import MovingAverage 151 152 dim_shape = (11, 11) 153 image = np.zeros(dim_shape) 154 image[5, 5] = 1. 155 156 ma = MovingAverage(dim_shape, size=5) 157 out = ma(image) 158 plt.figure(figsize=(10, 5)) 159 plt.subplot(121) 160 plt.imshow(image) 161 plt.colorbar() 162 plt.subplot(122) 163 plt.imshow(out) 164 plt.colorbar() 165 166 See Also 167 -------- 168 :py:class:`~pyxu.operator.GaussianFilter` 169 """ 170 size = _to_canonical_form(size, dim_shape) 171 if center is None: 172 assert all([s % 2 == 1 for s in size]), ( 173 "Can only infer center for odd `size`s. For even `size`s, please " "provide the desired `center`s." 174 ) 175 center = [s // 2 for s in size] 176 177 ndim, dtype, xp = _sanitize_inputs(dim_shape, dtype, gpu) 178 179 kernel = [xp.ones(s, dtype=dtype) for s in size] # use separable filters 180 scale = 1 / np.prod(size) 181 182 op = scale * pxls.Stencil(dim_shape=dim_shape, kernel=kernel, center=center, mode=mode) 183 op._name = "MovingAverage" 184 return op
185 186 187def GaussianFilter( 188 dim_shape: pxt.NDArrayShape, 189 sigma: typ.Union[typ.Tuple[pxt.Real], pxt.Real] = 1.0, 190 truncate: typ.Union[typ.Tuple[pxt.Real], pxt.Real] = 3.0, 191 order: typ.Union[typ.Tuple[pxt.Integer], pxt.Integer] = 0, 192 mode: ModeSpec = "constant", 193 sampling: typ.Union[pxt.Real, cabc.Sequence[pxt.Real, ...]] = 1, 194 gpu: bool = False, 195 dtype: typ.Optional[pxt.DType] = None, 196): 197 r""" 198 Multi-dimensional Gaussian filter. 199 200 Notes 201 ----- 202 This operator performs a convolution between the input :math:`D`-dimensional NDArray :math:`\mathbf{x} \in 203 \mathbb{R}^{N_0 \times \cdots \times N_{D-1}}` and a Gaussian :math:`D`-dimensional filter :math:`\mathbf{h} \in 204 \mathbb{R}^{\text{size} \times \cdots \times \text{size}}` using separable kernels for improved performance. 205 206 .. math:: 207 208 y_{i} = \sum_{j \in \mathcal{N}_{i}} a_{j} x_{j} \exp(\frac{d_{ij}^{2}}{\sigma^{2}}) 209 210 Where :math:`\mathcal{N}_{i}` is the set of elements neighbouring the :math:`i`-th element of the input array, and 211 :math:`a_{j} = \sum_{j \in \mathcal{N}_{i}} a_{j} \exp(\frac{d_{ij}^{2}}{\sigma^{2}})` normalizes the kernel to sum 212 to one. 213 214 215 Parameters 216 ---------- 217 dim_shape: NDArrayShape 218 Shape of the input array. 219 sigma: float, tuple 220 Standard deviation of the Gaussian kernel. 221 222 If a scalar value is provided, then the Gaussian filter will have as many dimensions as the input array. 223 If a tuple is provided, it should contain as many elements as `dim_shape`. 224 Use ``0`` to prevent filtering in a given dimension. 225 For example, the ``sigma=(0, 3)`` will convolve the input image in its last dimension. 226 truncate: float, tuple 227 Truncate the filter at this many standard deviations. 228 Defaults to 3.0. 229 order: int, tuple 230 Gaussian derivative order. 231 232 Use ``0`` for the standard Gaussian kernel. 233 mode: str, list[str] 234 Boundary conditions. 235 Multiple forms are accepted: 236 237 * str: unique mode shared amongst dimensions. 238 Must be one of: 239 240 * 'constant' (default): zero-padding 241 * 'wrap' 242 * 'reflect' 243 * 'symmetric' 244 * 'edge' 245 * tuple[str, ...]: the `d`-th dimension uses `mode[d]` as boundary condition. 246 247 (See :py:func:`numpy.pad` for details.) 248 sampling: Real, list[Real] 249 Sampling step (i.e. distance between two consecutive elements of an array). 250 Defaults to 1. 251 gpu: bool 252 Input NDArray type (`True` for GPU, `False` for CPU). 253 Defaults to `False`. 254 dtype: DType 255 Working precision of the linear operator. 256 257 Returns 258 ------- 259 op: OpT 260 GaussianFilter 261 262 Example 263 ------- 264 265 .. plot:: 266 267 import matplotlib.pyplot as plt 268 import numpy as np 269 from pyxu.operator import GaussianFilter 270 271 dim_shape = (11, 11) 272 image = np.zeros(dim_shape) 273 image[5, 5] = 1. 274 275 gaussian = GaussianFilter(dim_shape, sigma=3) 276 out = gaussian(image) 277 plt.figure(figsize=(10, 5)) 278 plt.subplot(121) 279 plt.imshow(image) 280 plt.colorbar() 281 plt.subplot(122) 282 plt.imshow(out) 283 plt.colorbar() 284 285 See Also 286 -------- 287 :py:class:`~pyxu.operator.MovingAverage`, 288 :py:class:`~pyxu.operator.DifferenceOfGaussians` 289 """ 290 291 ndim, dtype, xp = _sanitize_inputs(dim_shape, dtype, gpu) 292 sigma = _to_canonical_form(sigma, dim_shape) 293 truncate = _to_canonical_form(truncate, dim_shape) 294 order = _to_canonical_form(order, dim_shape) 295 sampling = _to_canonical_form(sampling, dim_shape) 296 297 kernel = [ 298 xp.array([1], dtype=dtype), 299 ] * len(dim_shape) 300 center = [0 for _ in range(len(dim_shape))] 301 302 for i, (sigma_, truncate_, order_, sampling_) in enumerate(zip(sigma, truncate, order, sampling)): 303 if sigma_: 304 sigma_pix = sigma_ / sampling_ 305 radius = int(truncate_ * float(sigma_pix) + 0.5) 306 kernel[i] = xp.asarray(np.flip(scif._gaussian_kernel1d(sigma_pix, order_, radius)), dtype=dtype) 307 kernel[i] /= sampling_**order_ 308 center[i] = radius 309 310 op = pxls.Stencil(dim_shape=dim_shape, kernel=kernel, center=center, mode=mode) 311 op._name = "GaussianFilter" 312 return op 313 314
[docs] 315def DifferenceOfGaussians( 316 dim_shape: pxt.NDArrayShape, 317 low_sigma=1.0, 318 high_sigma=None, 319 low_truncate=3.0, 320 high_truncate=3.0, 321 mode: ModeSpec = "constant", 322 sampling: typ.Union[pxt.Real, cabc.Sequence[pxt.Real, ...]] = 1, 323 gpu: bool = False, 324 dtype: typ.Optional[pxt.DType] = None, 325): 326 r""" 327 Multi-dimensional Difference of Gaussians filter. 328 329 Notes 330 ----- 331 332 This operator uses the Difference of Gaussians (DoG) method to a :math:`D`-dimensional NDArray :math:`\mathbf{x} \in 333 \mathbb{R}^{N_0 \times \cdots \times N_{D-1}}` using separable kernels for improved performance. 334 The DoG method blurs the input image with two Gaussian kernels with different sigma, and subtracts the more-blurred 335 signal from the less-blurred image. 336 This creates an output signal containing only the information from the original signal at the spatial scale 337 indicated by the two sigmas. 338 339 Parameters 340 ---------- 341 dim_shape: NDArrayShape 342 Shape of the input array. 343 low_sigma: float, tuple 344 Standard deviation of the Gaussian kernel with smaller sigmas across all axes. 345 346 If a scalar value is provided, then the Gaussian filter will have as many dimensions as the input array. 347 If a tuple is provided, it should contain as many elements as `dim_shape`. 348 Use ``0`` to prevent filtering in a given dimension. 349 For example, the ``low_sigma=(0, 3)`` will convolve the input image in its last dimension. 350 high_sigma: float, tuple, None 351 Standard deviation of the Gaussian kernel with larger sigmas across all axes. 352 If ``None`` is given (default), sigmas for all axes are calculated as ``1.6 * low_sigma``. 353 low_truncate: float, tuple 354 Truncate the filter at this many standard deviations. 355 Defaults to 3.0. 356 high_truncate: float, tuple 357 Truncate the filter at this many standard deviations. 358 Defaults to 3.0. 359 mode: str, list[str] 360 Boundary conditions. 361 Multiple forms are accepted: 362 363 * str: unique mode shared amongst dimensions. 364 Must be one of: 365 366 * 'constant' (default): zero-padding 367 * 'wrap' 368 * 'reflect' 369 * 'symmetric' 370 * 'edge' 371 * tuple[str, ...]: the `d`-th dimension uses `mode[d]` as boundary condition. 372 373 (See :py:func:`numpy.pad` for details.) 374 sampling: Real, list[Real] 375 Sampling step (i.e. distance between two consecutive elements of an array). 376 Defaults to 1. 377 gpu: bool 378 Input NDArray type (`True` for GPU, `False` for CPU). Defaults to `False`. 379 dtype: DType 380 Working precision of the linear operator. 381 382 Returns 383 ------- 384 op: OpT 385 DifferenceOfGaussians 386 387 Example 388 ------- 389 390 .. plot:: 391 392 import matplotlib.pyplot as plt 393 import numpy as np 394 from pyxu.operator import DoG 395 396 dim_shape = (11, 11) 397 image = np.zeros(dim_shape) 398 image[5, 5] = 1. 399 400 dog = DoG(dim_shape, low_sigma=3) 401 out = dog(image) 402 plt.figure(figsize=(10, 5)) 403 plt.subplot(121) 404 plt.imshow(image) 405 plt.colorbar() 406 plt.subplot(122) 407 plt.imshow(out) 408 plt.colorbar() 409 410 See Also 411 -------- 412 :py:class:`~pyxu.operator.Gaussian`, 413 :py:class:`~pyxu.operator.Sobel`, 414 :py:class:`~pyxu.operator.Prewitt`, 415 :py:class:`~pyxu.operator.Scharr`, 416 :py:class:`~pyxu.operator.StructureTensor` 417 """ 418 419 low_sigma = _to_canonical_form(low_sigma, dim_shape) 420 if high_sigma is None: 421 high_sigma = tuple(s * 1.6 for s in low_sigma) 422 423 high_sigma = _to_canonical_form(high_sigma, dim_shape) 424 low_truncate = _to_canonical_form(low_truncate, dim_shape) 425 high_truncate = _to_canonical_form(high_truncate, dim_shape) 426 427 kwargs = { 428 "dim_shape": dim_shape, 429 "order": 0, 430 "mode": mode, 431 "gpu": gpu, 432 "dtype": dtype, 433 "sampling": sampling, 434 } 435 op_low = GaussianFilter(sigma=low_sigma, truncate=low_truncate, **kwargs) 436 op_high = GaussianFilter(sigma=high_sigma, truncate=high_truncate, **kwargs) 437 op = op_low - op_high 438 op._name = "DifferenceOfGaussians" 439 return op
440 441 442DoG = DifferenceOfGaussians #: Alias of :py:func:`~pyxu.operator.DifferenceOfGaussians`. 443 444
[docs] 445def Laplace( 446 dim_shape: pxt.NDArrayShape, 447 mode: ModeSpec = "constant", 448 sampling: typ.Union[pxt.Real, cabc.Sequence[pxt.Real, ...]] = 1, 449 gpu: bool = False, 450 dtype: typ.Optional[pxt.DType] = None, 451): 452 r""" 453 Multi-dimensional Laplace filter. 454 455 The implementation is based on second derivatives approximated via finite differences. 456 457 Notes 458 ----- 459 This operator uses the applies the Laplace kernel :math:`[1 -2 1]` to a :math:`D`-dimensional NDArray 460 :math:`\mathbf{x} \in \mathbb{R}^{N_0 \times \cdots \times N_{D-1}}` using separable kernels for improved 461 performance. The Laplace filter is commonly used to find high-frequency components in the signal, such as for 462 example, the edges in an image. 463 464 Parameters 465 ---------- 466 dim_shape: NDArrayShape 467 Shape of the input array. 468 mode: str, list[str] 469 Boundary conditions. 470 Multiple forms are accepted: 471 472 * str: unique mode shared amongst dimensions. 473 Must be one of: 474 475 * 'constant' (default): zero-padding 476 * 'wrap' 477 * 'reflect' 478 * 'symmetric' 479 * 'edge' 480 * tuple[str, ...]: the `d`-th dimension uses `mode[d]` as boundary condition. 481 482 (See :py:func:`numpy.pad` for details.) 483 sampling: Real, list[Real] 484 Sampling step (i.e. distance between two consecutive elements of an array). 485 Defaults to 1. 486 gpu: bool 487 Input NDArray type (`True` for GPU, `False` for CPU). Defaults to `False`. 488 dtype: DType 489 Working precision of the linear operator. 490 491 Returns 492 ------- 493 op: OpT 494 DifferenceOfGaussians 495 496 Example 497 ------- 498 499 .. plot:: 500 501 import matplotlib.pyplot as plt 502 import numpy as np 503 from pyxu.operator import Laplace 504 505 dim_shape = (11, 11) 506 image = np.zeros(dim_shape) 507 image[5, 5] = 1. 508 509 laplace = Laplace(dim_shape) 510 out = laplace(image) 511 plt.figure(figsize=(10, 5)) 512 plt.subplot(121) 513 plt.imshow(image) 514 plt.colorbar() 515 plt.subplot(122) 516 plt.imshow(out) 517 plt.colorbar() 518 519 See Also 520 -------- 521 :py:class:`~pyxu.operator.Sobel`, 522 :py:class:`~pyxu.operator.Prewitt`, 523 :py:class:`~pyxu.operator.Scharr`, 524 """ 525 526 ndim, dtype, xp = _sanitize_inputs(dim_shape, dtype, gpu) 527 sampling = _to_canonical_form(sampling, dim_shape) 528 centers = [[1 if i == dim else 0 for i in range(ndim)] for dim in range(ndim)] 529 kernels = [ 530 xp.array([1.0, -2.0, 1.0], dtype=dtype).reshape([-1 if i == dim else 1 for i in range(ndim)]) / sampling[dim] 531 for dim in range(ndim) 532 ] 533 ops = [pxls.Stencil(dim_shape=dim_shape, kernel=k, center=c, mode=mode) for (k, c) in zip(kernels, centers)] 534 op = functools.reduce(lambda x, y: x + y, ops) 535 op._name = "Laplace" 536 return op
537 538
[docs] 539def Sobel( 540 dim_shape: pxt.NDArrayShape, 541 axis: typ.Optional[typ.Tuple] = None, 542 mode: ModeSpec = "constant", 543 sampling: typ.Union[pxt.Real, cabc.Sequence[pxt.Real, ...]] = 1, 544 gpu: bool = False, 545 dtype: typ.Optional[pxt.DType] = None, 546): 547 r""" 548 Multi-dimensional Sobel filter. 549 550 Notes 551 ----- 552 553 This operator uses the applies the multi-dimensional Sobel filter to a :math:`D`-dimensional NDArray 554 :math:`\mathbf{x} \in \mathbb{R}^{N_0 \times \cdots \times N_{D-1}}` using separable kernels for improved 555 performance. The Sobel filter applies the following edge filter in the dimensions of interest: ``[1, 0, -1]`` and 556 the smoothing filter on the rest of dimensions: ``[1, 2, 1] / 4``. The Sobel filter is commonly used to find 557 high-frequency components in the signal, such as for example, the edges in an image. 558 559 Parameters 560 ---------- 561 dim_shape: NDArrayShape 562 Shape of the input array. 563 axis: int, tuple 564 Compute the edge filter along this axis. If not provided, the edge magnitude is computed. 565 566 This is defined as: ``np.sqrt(sum([sobel(array, axis=i)**2 for i in range(array.ndim)]) / array.ndim)`` The 567 magnitude is also computed if axis is a sequence. 568 569 mode: str, list[str] 570 Boundary conditions. 571 Multiple forms are accepted: 572 573 * str: unique mode shared amongst dimensions. 574 Must be one of: 575 576 * 'constant' (default): zero-padding 577 * 'wrap' 578 * 'reflect' 579 * 'symmetric' 580 * 'edge' 581 * tuple[str, ...]: the `d`-th dimension uses `mode[d]` as boundary condition. 582 583 (See :py:func:`numpy.pad` for details.) 584 sampling: Real, list[Real] 585 Sampling step (i.e. distance between two consecutive elements of an array). 586 Defaults to 1. 587 gpu: bool 588 Input NDArray type (`True` for GPU, `False` for CPU). Defaults to `False`. 589 dtype: DType 590 Working precision of the linear operator. 591 592 Returns 593 ------- 594 op: OpT 595 Sobel 596 597 Example 598 ------- 599 600 .. plot:: 601 602 import matplotlib.pyplot as plt 603 import numpy as np 604 from pyxu.operator import Sobel 605 606 dim_shape = (11, 11) 607 image = np.zeros(dim_shape) 608 image[5, 5] = 1. 609 610 sobel = Sobel(dim_shape) 611 out = sobel(image) 612 plt.figure(figsize=(10, 5)) 613 plt.subplot(121) 614 plt.imshow(image) 615 plt.colorbar() 616 plt.subplot(122) 617 plt.imshow(out) 618 plt.colorbar() 619 620 See Also 621 -------- 622 :py:class:`~pyxu.operator.Prewitt`, 623 :py:class:`~pyxu.operator.Scharr`, 624 """ 625 smooth_kernel = np.array([1, 2, 1]) / 4 626 return _EdgeFilter( 627 dim_shape=dim_shape, 628 smooth_kernel=smooth_kernel, 629 filter_name="SobelFilter", 630 axis=axis, 631 mode=mode, 632 sampling=sampling, 633 gpu=gpu, 634 dtype=dtype, 635 )
636 637
[docs] 638def Prewitt( 639 dim_shape: pxt.NDArrayShape, 640 axis: typ.Optional[typ.Tuple] = None, 641 mode: ModeSpec = "constant", 642 sampling: typ.Union[pxt.Real, cabc.Sequence[pxt.Real, ...]] = 1, 643 gpu: bool = False, 644 dtype: typ.Optional[pxt.DType] = None, 645): 646 r""" 647 Multi-dimensional Prewitt filter. 648 649 Notes 650 ----- 651 652 This operator uses the applies the multi-dimensional Prewitt filter to a :math:`D`-dimensional NDArray 653 :math:`\mathbf{x} \in \mathbb{R}^{N_0 \times \cdots \times N_{D-1}}` using separable kernels for improved 654 performance. The Prewitt filter applies the following edge filter in the dimensions of interest: ``[1, 0, -1]``, 655 and the smoothing filter on the rest of dimensions: ``[1, 1, 1] / 3``. The Prewitt filter is commonly used to find 656 high-frequency components in the signal, such as for example, the edges in an image. 657 658 Parameters 659 ---------- 660 dim_shape: NDArrayShape 661 Shape of the input array. 662 axis: int, tuple 663 Compute the edge filter along this axis. If not provided, the edge magnitude is computed. This is defined as: 664 665 ``np.sqrt(sum([prewitt(array, axis=i)**2 for i in range(array.ndim)]) / array.ndim)`` The magnitude is also 666 computed if axis is a sequence. 667 668 mode: str, list[str] 669 Boundary conditions. 670 Multiple forms are accepted: 671 672 * str: unique mode shared amongst dimensions. 673 Must be one of: 674 675 * 'constant' (default): zero-padding 676 * 'wrap' 677 * 'reflect' 678 * 'symmetric' 679 * 'edge' 680 * tuple[str, ...]: the `d`-th dimension uses `mode[d]` as boundary condition. 681 682 (See :py:func:`numpy.pad` for details.) 683 sampling: Real, list[Real] 684 Sampling step (i.e. distance between two consecutive elements of an array). 685 Defaults to 1. 686 gpu: bool 687 Input NDArray type (`True` for GPU, `False` for CPU). Defaults to `False`. 688 dtype: DType 689 Working precision of the linear operator. 690 691 Returns 692 ------- 693 op: OpT 694 Prewitt 695 696 Example 697 ------- 698 699 .. plot:: 700 701 import matplotlib.pyplot as plt 702 import numpy as np 703 from pyxu.operator import Prewitt 704 705 dim_shape = (11, 11) 706 image = np.zeros(dim_shape) 707 image[5, 5] = 1. 708 709 prewitt = Prewitt(dim_shape) 710 out = prewitt(image) 711 plt.figure(figsize=(10, 5)) 712 plt.subplot(121) 713 plt.imshow(image) 714 plt.colorbar() 715 plt.subplot(122) 716 plt.imshow(out) 717 plt.colorbar() 718 719 See Also 720 -------- 721 :py:class:`~pyxu.operator.Sobel`, 722 :py:class:`~pyxu.operator.Scharr`, 723 """ 724 smooth_kernel = np.full((3,), 1 / 3) 725 return _EdgeFilter( 726 dim_shape=dim_shape, 727 smooth_kernel=smooth_kernel, 728 filter_name="Prewitt", 729 axis=axis, 730 mode=mode, 731 sampling=sampling, 732 gpu=gpu, 733 dtype=dtype, 734 )
735 736
[docs] 737def Scharr( 738 dim_shape: pxt.NDArrayShape, 739 axis: typ.Optional[typ.Tuple] = None, 740 mode: ModeSpec = "constant", 741 sampling: typ.Union[pxt.Real, cabc.Sequence[pxt.Real, ...]] = 1, 742 gpu: bool = False, 743 dtype: typ.Optional[pxt.DType] = None, 744): 745 r""" 746 Multi-dimensional Scharr filter. 747 748 Notes 749 ----- 750 751 This operator uses the applies the multi-dimensional Scharr filter to a :math:`D`-dimensional NDArray 752 :math:`\mathbf{x} \in \mathbb{R}^{N_0 \times \cdots \times N_{D-1}}` using separable kernels for improved 753 performance. The Scharr filter applies the following edge filter in the dimensions of interest: ``[1, 0, -1]``, and 754 the smoothing filter on the rest of dimensions: ``[3, 10, 3] / 16``. The Scharr filter is commonly used to find 755 high-frequency components in the signal, such as for example, the edges in an image. 756 757 Parameters 758 ---------- 759 dim_shape: NDArrayShape 760 Shape of the input array. 761 axis: int, tuple 762 Compute the edge filter along this axis. If not provided, the edge magnitude is computed. This is defined as: 763 764 ``np.sqrt(sum([scharr(array, axis=i)**2 for i in range(array.ndim)]) / array.ndim)`` The magnitude is also 765 computed if axis is a sequence. 766 mode: str, list[str] 767 Boundary conditions. 768 Multiple forms are accepted: 769 770 * str: unique mode shared amongst dimensions. 771 Must be one of: 772 773 * 'constant' (default): zero-padding 774 * 'wrap' 775 * 'reflect' 776 * 'symmetric' 777 * 'edge' 778 * tuple[str, ...]: the `d`-th dimension uses `mode[d]` as boundary condition. 779 780 (See :py:func:`numpy.pad` for details.) 781 sampling: Real, list[Real] 782 Sampling step (i.e. distance between two consecutive elements of an array). 783 Defaults to 1. 784 gpu: bool 785 Input NDArray type (`True` for GPU, `False` for CPU). Defaults to `False`. 786 dtype: DType 787 Working precision of the linear operator. 788 789 Returns 790 ------- 791 op: OpT 792 Scharr 793 794 Example 795 ------- 796 797 .. plot:: 798 799 import matplotlib.pyplot as plt 800 import numpy as np 801 from pyxu.operator import Scharr 802 803 dim_shape = (11, 11) 804 image = np.zeros(dim_shape) 805 image[5, 5] = 1. 806 807 scharr = Scharr(dim_shape) 808 out = scharr(image) 809 plt.figure(figsize=(10, 5)) 810 plt.subplot(121) 811 plt.imshow(image) 812 plt.colorbar() 813 plt.subplot(122) 814 plt.imshow(out) 815 plt.colorbar() 816 817 See Also 818 -------- 819 :py:class:`~pyxu.operator.Sobel`, 820 :py:class:`~pyxu.operator.Prewitt`, 821 """ 822 smooth_kernel = np.array([3, 10, 3]) / 16 823 return _EdgeFilter( 824 dim_shape=dim_shape, 825 smooth_kernel=smooth_kernel, 826 filter_name="Scharr", 827 axis=axis, 828 mode=mode, 829 sampling=sampling, 830 gpu=gpu, 831 dtype=dtype, 832 )
833 834 835def _EdgeFilter( 836 dim_shape: pxt.NDArrayShape, 837 smooth_kernel: KernelSpec, 838 filter_name: str, 839 axis: typ.Optional[typ.Tuple] = None, 840 mode: ModeSpec = "constant", 841 sampling: typ.Union[pxt.Real, cabc.Sequence[pxt.Real, ...]] = 1, 842 gpu: bool = False, 843 dtype: typ.Optional[pxt.DType] = None, 844): 845 from pyxu.operator import Sqrt, Square 846 847 square = Square(dim_shape=dim_shape) 848 sqrt = Sqrt(dim_shape=dim_shape) 849 850 ndim, dtype, xp = _sanitize_inputs(dim_shape, dtype, gpu) 851 sampling = _to_canonical_form(sampling, dim_shape) 852 853 axes = _get_axes(axis, ndim) 854 855 return_magnitude = len(axes) > 1 856 857 op_list = [] 858 for edge_dim in axes: 859 kernel = [xp.array(1, dtype=dtype)] * len(dim_shape) 860 center = np.ones(len(dim_shape), dtype=int) 861 # We define the kernel reversed compared to Scipy or Skimage because we use correlation instead of convolution 862 kernel[edge_dim] = xp.array([-1, 0, 1], dtype=dtype) / sampling[edge_dim] 863 smooth_axes = list(set(range(ndim)) - {edge_dim}) 864 for smooth_dim in smooth_axes: 865 kernel[smooth_dim] = xp.asarray(smooth_kernel, dtype=dtype) / sampling[smooth_dim] 866 867 if return_magnitude: 868 op_list.append(square * pxls.Stencil(dim_shape=dim_shape, kernel=kernel, center=center, mode=mode)) 869 else: 870 op_list.append(pxls.Stencil(dim_shape=dim_shape, kernel=kernel, center=center, mode=mode)) 871 872 op = functools.reduce(lambda x, y: x + y, op_list) 873 if return_magnitude: 874 op = (1 / np.sqrt(ndim)) * (sqrt * op) 875 876 op._name = filter_name 877 return op 878 879
[docs] 880class StructureTensor(pxa.DiffMap): 881 r""" 882 Structure tensor operator. 883 884 Notes 885 ----- 886 The Structure Tensor, also known as the second-order moment tensor or the inertia tensor, is a matrix derived from 887 the gradient of a function. It describes the distribution of the gradient (i.e., its prominent directions) in a 888 specified neighbourhood around a point, and the degree to which those directions are coherent. The structure tensor 889 of a :math:`D`-dimensional signal :math:`\mathbf{f} \in \mathbb{R}^{N_0 \times \cdots \times N_{D-1}}` can be 890 written as: 891 892 .. math:: 893 894 \mathbf{S}_\sigma \mathbf{f} = \mathbf{g}_{\sigma} * \nabla\mathbf{f} (\nabla\mathbf{f})^{\top} = \mathbf{g}_{\sigma} * 895 \begin{bmatrix} 896 \left( \dfrac{ \partial\mathbf{f} }{ \partial x_{0} } \right)^2 & \dfrac{ \partial^{2}\mathbf{f} }{ \partial x_{0}\,\partial x_{1} } & \cdots & \dfrac{ \partial\mathbf{f} }{ \partial x_{0} } \dfrac{ \partial\mathbf{f} }{ \partial x_{D-1} } \\ 897 \dfrac{ \partial\mathbf{f} }{ \partial x_{1} } \dfrac{ \partial\mathbf{f} }{ \partial x_{0} } & \left( \dfrac{ \partial\mathbf{f} }{ \partial x_{1} }\right)^2 & \cdots & \dfrac{ \partial\mathbf{f} }{ \partial x_{1} } \dfrac{ \partial\mathbf{f} }{ \partial x_{D-1} } \\ 898 \vdots & \vdots & \ddots & \vdots \\ 899 \dfrac{ \partial\mathbf{f} }{ \partial x_{D-1} } \dfrac{ \partial\mathbf{f} }{ \partial x_{0} } & \dfrac{ \partial\mathbf{f} }{ \partial x_{D-1} } \dfrac{ \partial\mathbf{f} }{ \partial x_{1} } & \cdots & \left( \dfrac{ \partial\mathbf{f} }{ \partial x_{D-1}} \right)^2 900 \end{bmatrix}, 901 902 where :math:`\mathbf{g}_{\sigma} \in \mathbb{R}^{N_0 \times \cdots \times N_{D-1}}` is a discrete Gaussian filter 903 with standard variation :math:`\sigma` with which a convolution is performed elementwise. 904 905 However, due to the symmetry of the structure tensor, only the upper triangular part is computed in practice: 906 907 .. math:: 908 909 \mathbf{H}_{\mathbf{v}_1, \ldots ,\mathbf{v}_m} \mathbf{f} = \mathbf{g}_{\sigma} * \begin{bmatrix} 910 \left( \dfrac{ \partial\mathbf{f} }{ \partial x_{0} } \right)^2 \\ 911 \dfrac{ \partial^{2}\mathbf{f} }{ \partial x_{0}\,\partial x_{1} } \\ 912 \vdots \\ 913 \left( \dfrac{ \partial\mathbf{f} }{ \partial x_{D-1}} \right)^2 914 \end{bmatrix} \mathbf{f} \in \mathbb{R}^{\frac{D (D-1)}{2} \times N_0 \times \cdots \times N_{D-1}} 915 916 Remark 917 ------ 918 In case of using the finite differences (`diff_type="fd"`), the finite difference scheme defaults to `central` (see 919 :py:class:`~pyxu.operator.PartialDerivative`). 920 921 Example 922 ------- 923 924 .. plot:: 925 926 import numpy as np 927 import matplotlib.pyplot as plt 928 from pyxu.operator import StructureTensor 929 from pyxu.util.misc import peaks 930 931 # Define input image 932 n = 1000 933 x = np.linspace(-3, 3, n) 934 xx, yy = np.meshgrid(x, x) 935 image = peaks(xx, yy) 936 nsamples = 2 937 dim_shape = image.shape # (1000, 1000) 938 images = np.tile(image, (nsamples, 1, 1)) 939 # Instantiate structure tensor operator 940 structure_tensor = StructureTensor(dim_shape=dim_shape) 941 942 outputs = structure_tensor(images) 943 print(outputs.shape) # (2, 3, 1000, 1000) 944 # Plot 945 plt.figure() 946 plt.imshow(images[0]) 947 plt.colorbar() 948 plt.title("Image") 949 plt.axis("off") 950 951 plt.figure() 952 plt.imshow(outputs[0][0]) 953 plt.colorbar() 954 plt.title(r"$\hat{S}_{xx}$") 955 plt.axis("off") 956 957 plt.figure() 958 plt.imshow(outputs[0][1]) 959 plt.colorbar() 960 plt.title(r"$\hat{S}_{xy}$") 961 plt.axis("off") 962 963 plt.figure() 964 plt.imshow(outputs[0][2]) 965 plt.colorbar() 966 plt.title(r"$\hat{S}_{yy}$") 967 plt.axis("off") 968 969 See Also 970 -------- 971 :py:class:`~pyxu.operator.PartialDerivative`, 972 :py:class:`~pyxu.operator.Gradient`, 973 :py:class:`~pyxu.operator.Hessian` 974 """ 975 976 def __init__( 977 self, 978 dim_shape: pxt.NDArrayShape, 979 diff_method="fd", 980 smooth_sigma: typ.Union[pxt.Real, tuple[pxt.Real, ...]] = 1.0, 981 smooth_truncate: typ.Union[pxt.Real, tuple[pxt.Real, ...]] = 3.0, 982 mode: ModeSpec = "constant", 983 sampling: typ.Union[pxt.Real, tuple[pxt.Real, ...]] = 1, 984 gpu: bool = False, 985 dtype: typ.Optional[pxt.DType] = None, 986 parallel: bool = False, 987 **diff_kwargs, 988 ): 989 ndim = len(dim_shape) 990 ntriu = (ndim * (ndim + 1)) // 2 991 super().__init__(dim_shape=dim_shape, codim_shape=(ntriu,) + dim_shape) 992 self.directions = tuple( 993 list(_) for _ in itertools.combinations_with_replacement(np.arange(len(dim_shape)).astype(int), 2) 994 ) 995 996 if diff_method == "fd": 997 diff_kwargs.update({"scheme": diff_kwargs.pop("scheme", "central")}) 998 999 self.grad = pxld.Gradient( 1000 dim_shape=dim_shape, 1001 directions=None, 1002 mode=mode, 1003 gpu=gpu, 1004 dtype=dtype, 1005 sampling=sampling, 1006 parallel=parallel, 1007 **diff_kwargs, 1008 ) 1009 1010 if smooth_sigma: 1011 self.smooth = GaussianFilter( 1012 dim_shape=dim_shape, 1013 sigma=smooth_sigma, 1014 truncate=smooth_truncate, 1015 order=0, 1016 mode=mode, 1017 sampling=sampling, 1018 gpu=gpu, 1019 dtype=dtype, 1020 ) 1021 else: 1022 self.smooth = pxlb.IdentityOp(dim_shape=dim_shape) 1023
[docs] 1024 def apply(self, arr): 1025 xp = pxu.get_array_module(arr) 1026 sh = arr.shape[: -self.dim_rank] 1027 grad = self.grad(arr) 1028 1029 def slice_(ax): 1030 return (slice(None),) * len(sh) + (slice(ax, ax + 1),) 1031 1032 return xp.concatenate( 1033 [self.smooth((grad[slice_(i)] * grad[slice_(j)])) for i, j in self.directions], 1034 axis=len(sh), 1035 ).reshape(*sh, len(self.directions), *self.dim_shape)