1# Copyright 2007 Google, Inc. All Rights Reserved.
2# Licensed to PSF under a Contributor Agreement.
3
4"""Abstract Base Classes (ABCs) for numbers, according to PEP 3141.
5
6TODO: Fill out more detailed documentation on the operators."""
7
8############ Maintenance notes #########################################
9#
10# ABCs are different from other standard library modules in that they
11# specify compliance tests. In general, once an ABC has been published,
12# new methods (either abstract or concrete) cannot be added.
13#
14# Though classes that inherit from an ABC would automatically receive a
15# new mixin method, registered classes would become non-compliant and
16# violate the contract promised by ``isinstance(someobj, SomeABC)``.
17#
18# Though irritating, the correct procedure for adding new abstract or
19# mixin methods is to create a new ABC as a subclass of the previous
20# ABC.
21#
22# Because they are so hard to change, new ABCs should have their APIs
23# carefully thought through prior to publication.
24#
25# Since ABCMeta only checks for the presence of methods, it is possible
26# to alter the signature of a method by adding optional arguments
27# or changing parameter names. This is still a bit dubious but at
28# least it won't cause isinstance() to return an incorrect result.
29#
30#
31#######################################################################
32
33from abc import ABCMeta, abstractmethod
34
35__all__ = ["Number", "Complex", "Real", "Rational", "Integral"]
36
37class Number(metaclass=ABCMeta):
38 """All numbers inherit from this class.
39
40 If you just want to check if an argument x is a number, without
41 caring what kind, use isinstance(x, Number).
42 """
43 __slots__ = ()
44
45 # Concrete numeric types must provide their own hash implementation
46 __hash__ = None
47
48
49## Notes on Decimal
50## ----------------
51## Decimal has all of the methods specified by the Real abc, but it should
52## not be registered as a Real because decimals do not interoperate with
53## binary floats (i.e. Decimal('3.14') + 2.71828 is undefined). But,
54## abstract reals are expected to interoperate (i.e. R1 + R2 should be
55## expected to work if R1 and R2 are both Reals).
56
57class Complex(Number):
58 """Complex defines the operations that work on the builtin complex type.
59
60 In short, those are: a conversion to complex, .real, .imag, +, -,
61 *, /, **, abs(), .conjugate, ==, and !=.
62
63 If it is given heterogeneous arguments, and doesn't have special
64 knowledge about them, it should fall back to the builtin complex
65 type as described below.
66 """
67
68 __slots__ = ()
69
70 @abstractmethod
71 def __complex__(self):
72 """Return a builtin complex instance. Called for complex(self)."""
73
74 def __bool__(self):
75 """True if self != 0. Called for bool(self)."""
76 return self != 0
77
78 @property
79 @abstractmethod
80 def real(self):
81 """Retrieve the real component of this number.
82
83 This should subclass Real.
84 """
85 raise NotImplementedError
86
87 @property
88 @abstractmethod
89 def imag(self):
90 """Retrieve the imaginary component of this number.
91
92 This should subclass Real.
93 """
94 raise NotImplementedError
95
96 @abstractmethod
97 def __add__(self, other):
98 """self + other"""
99 raise NotImplementedError
100
101 @abstractmethod
102 def __radd__(self, other):
103 """other + self"""
104 raise NotImplementedError
105
106 @abstractmethod
107 def __neg__(self):
108 """-self"""
109 raise NotImplementedError
110
111 @abstractmethod
112 def __pos__(self):
113 """+self"""
114 raise NotImplementedError
115
116 def __sub__(self, other):
117 """self - other"""
118 return self + -other
119
120 def __rsub__(self, other):
121 """other - self"""
122 return -self + other
123
124 @abstractmethod
125 def __mul__(self, other):
126 """self * other"""
127 raise NotImplementedError
128
129 @abstractmethod
130 def __rmul__(self, other):
131 """other * self"""
132 raise NotImplementedError
133
134 @abstractmethod
135 def __truediv__(self, other):
136 """self / other: Should promote to float when necessary."""
137 raise NotImplementedError
138
139 @abstractmethod
140 def __rtruediv__(self, other):
141 """other / self"""
142 raise NotImplementedError
143
144 @abstractmethod
145 def __pow__(self, exponent):
146 """self ** exponent; should promote to float or complex when necessary."""
147 raise NotImplementedError
148
149 @abstractmethod
150 def __rpow__(self, base):
151 """base ** self"""
152 raise NotImplementedError
153
154 @abstractmethod
155 def __abs__(self):
156 """Returns the Real distance from 0. Called for abs(self)."""
157 raise NotImplementedError
158
159 @abstractmethod
160 def conjugate(self):
161 """(x+y*i).conjugate() returns (x-y*i)."""
162 raise NotImplementedError
163
164 @abstractmethod
165 def __eq__(self, other):
166 """self == other"""
167 raise NotImplementedError
168
169Complex.register(complex)
170
171
[docs]
172class Real(Complex):
173 """To Complex, Real adds the operations that work on real numbers.
174
175 In short, those are: a conversion to float, trunc(), divmod,
176 %, <, <=, >, and >=.
177
178 Real also provides defaults for the derived operations.
179 """
180
181 __slots__ = ()
182
183 @abstractmethod
184 def __float__(self):
185 """Any Real can be converted to a native float object.
186
187 Called for float(self)."""
188 raise NotImplementedError
189
190 @abstractmethod
191 def __trunc__(self):
192 """trunc(self): Truncates self to an Integral.
193
194 Returns an Integral i such that:
195 * i > 0 iff self > 0;
196 * abs(i) <= abs(self);
197 * for any Integral j satisfying the first two conditions,
198 abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
199 i.e. "truncate towards 0".
200 """
201 raise NotImplementedError
202
203 @abstractmethod
204 def __floor__(self):
205 """Finds the greatest Integral <= self."""
206 raise NotImplementedError
207
208 @abstractmethod
209 def __ceil__(self):
210 """Finds the least Integral >= self."""
211 raise NotImplementedError
212
213 @abstractmethod
214 def __round__(self, ndigits=None):
215 """Rounds self to ndigits decimal places, defaulting to 0.
216
217 If ndigits is omitted or None, returns an Integral, otherwise
218 returns a Real. Rounds half toward even.
219 """
220 raise NotImplementedError
221
222 def __divmod__(self, other):
223 """divmod(self, other): The pair (self // other, self % other).
224
225 Sometimes this can be computed faster than the pair of
226 operations.
227 """
228 return (self // other, self % other)
229
230 def __rdivmod__(self, other):
231 """divmod(other, self): The pair (other // self, other % self).
232
233 Sometimes this can be computed faster than the pair of
234 operations.
235 """
236 return (other // self, other % self)
237
238 @abstractmethod
239 def __floordiv__(self, other):
240 """self // other: The floor() of self/other."""
241 raise NotImplementedError
242
243 @abstractmethod
244 def __rfloordiv__(self, other):
245 """other // self: The floor() of other/self."""
246 raise NotImplementedError
247
248 @abstractmethod
249 def __mod__(self, other):
250 """self % other"""
251 raise NotImplementedError
252
253 @abstractmethod
254 def __rmod__(self, other):
255 """other % self"""
256 raise NotImplementedError
257
258 @abstractmethod
259 def __lt__(self, other):
260 """self < other
261
262 < on Reals defines a total ordering, except perhaps for NaN."""
263 raise NotImplementedError
264
265 @abstractmethod
266 def __le__(self, other):
267 """self <= other"""
268 raise NotImplementedError
269
270 # Concrete implementations of Complex abstract methods.
271 def __complex__(self):
272 """complex(self) == complex(float(self), 0)"""
273 return complex(float(self))
274
275 @property
276 def real(self):
277 """Real numbers are their real component."""
278 return +self
279
280 @property
281 def imag(self):
282 """Real numbers have no imaginary component."""
283 return 0
284
285 def conjugate(self):
286 """Conjugate is a no-op for Reals."""
287 return +self
288
289Real.register(float)
290
291
292class Rational(Real):
293 """.numerator and .denominator should be in lowest terms."""
294
295 __slots__ = ()
296
297 @property
298 @abstractmethod
299 def numerator(self):
300 raise NotImplementedError
301
302 @property
303 @abstractmethod
304 def denominator(self):
305 raise NotImplementedError
306
307 # Concrete implementation of Real's conversion to float.
308 def __float__(self):
309 """float(self) = self.numerator / self.denominator
310
311 It's important that this conversion use the integer's "true"
312 division rather than casting one side to float before dividing
313 so that ratios of huge integers convert without overflowing.
314
315 """
316 return int(self.numerator) / int(self.denominator)
317
318
319class Integral(Rational):
320 """Integral adds methods that work on integral numbers.
321
322 In short, these are conversion to int, pow with modulus, and the
323 bit-string operations.
324 """
325
326 __slots__ = ()
327
328 @abstractmethod
329 def __int__(self):
330 """int(self)"""
331 raise NotImplementedError
332
333 def __index__(self):
334 """Called whenever an index is needed, such as in slicing"""
335 return int(self)
336
337 @abstractmethod
338 def __pow__(self, exponent, modulus=None):
339 """self ** exponent % modulus, but maybe faster.
340
341 Accept the modulus argument if you want to support the
342 3-argument version of pow(). Raise a TypeError if exponent < 0
343 or any argument isn't Integral. Otherwise, just implement the
344 2-argument version described in Complex.
345 """
346 raise NotImplementedError
347
348 @abstractmethod
349 def __lshift__(self, other):
350 """self << other"""
351 raise NotImplementedError
352
353 @abstractmethod
354 def __rlshift__(self, other):
355 """other << self"""
356 raise NotImplementedError
357
358 @abstractmethod
359 def __rshift__(self, other):
360 """self >> other"""
361 raise NotImplementedError
362
363 @abstractmethod
364 def __rrshift__(self, other):
365 """other >> self"""
366 raise NotImplementedError
367
368 @abstractmethod
369 def __and__(self, other):
370 """self & other"""
371 raise NotImplementedError
372
373 @abstractmethod
374 def __rand__(self, other):
375 """other & self"""
376 raise NotImplementedError
377
378 @abstractmethod
379 def __xor__(self, other):
380 """self ^ other"""
381 raise NotImplementedError
382
383 @abstractmethod
384 def __rxor__(self, other):
385 """other ^ self"""
386 raise NotImplementedError
387
388 @abstractmethod
389 def __or__(self, other):
390 """self | other"""
391 raise NotImplementedError
392
393 @abstractmethod
394 def __ror__(self, other):
395 """other | self"""
396 raise NotImplementedError
397
398 @abstractmethod
399 def __invert__(self):
400 """~self"""
401 raise NotImplementedError
402
403 # Concrete implementations of Rational and Real abstract methods.
404 def __float__(self):
405 """float(self) == float(int(self))"""
406 return float(int(self))
407
408 @property
409 def numerator(self):
410 """Integers are their own numerators."""
411 return +self
412
413 @property
414 def denominator(self):
415 """Integers have a denominator of 1."""
416 return 1
417
418Integral.register(int)